328 Short Reports

limonene, 1,8-cineol and p-cymene in the volatile oil and ether extracts from this material.

The ether extracts (20 ml) of the seeds (3 kg) were chromatographed on $\mathrm{Si}_2\mathrm{O}$ with hexane– $\mathrm{C}_6\mathrm{H}_6$ mixtures (19:1–1:19) and $\mathrm{C}_6\mathrm{H}_6$ and analysed by TLC (Si gel GF (Merk), $\mathrm{C}_6\mathrm{H}_6$). The positive fractions with Brady's reagent were rechromatographed with $\mathrm{C}_6\mathrm{H}_6$ to give similar smelling, pale yellow oils 1 (25 mg) and 2 (20 mg). Analytical samples were obtained by prep TLC (Si gel GF (Merck), hexane). These compounds analysed for $\mathrm{C}_{10}\mathrm{H}_{10}\mathrm{O}$. $\mathrm{M}^+=146$ and preliminary investigation showed the presence of a CHO.

1 formed a 2,4-dinitrophenylhydrazone, orange needles, mp 253–254°, $C_{10}H_{14}N_4O_4$, $M^+=326.1006$. IR of 1 showed absorption at 1692 cm⁻¹ due to the aromatic aldehyde. The PMR (60 M Hz) in CCl₄ showed signals at δ 2.19 (2H, m, CH₂), δ 2.98 (4H, t, J=8 Hz, CH₂ × 2), δ 7.12 (1H, d, J=10 Hz, aromatic H), δ 7.59 (1H, d, d) = 10 Hz, aromatic H) and δ 9.82 (1H, d), aromatic CHO),

1: R = CHO, R' = H 2: R = H, R' = CHO suggesting that 1 contained three methylene groups, two aromatic ortho coupled protons, one isolated aromatic proton and an aromatic aldehyde.

Finally, the structure of 1 was established as 1H-indene-2,3-dihydro-5-carboxaldehyde by the agreement of IR and PMR with the published spectra [2,3].

Compound 2 also formed a 2,4-dinitrophenylhydrazone, orange needles, mp 259–260°, $C_{10}H_{14}N_4O_4$, $M^+=326.1023$. The IR of 2 showed absorption at 1700 cm⁻¹ due to the aromatic aldehyde. The PMR in CCl₄, showed signals at δ 2.12 (2H, m, CH₂), δ 2.82 (2H, t, J=8 Hz, CH₂), δ 3.16 (2H, t, J=8 Hz, CH₂), δ 7.31 (3H, m, aromatic H) and δ 10.2 (1H, s, aromatic CHO), suggesting that 2 is an isomer of 1.

2 therefore must be 1H-indene-2,3-dihydro-4-carbox-aldehyde. Although previously synthesized [4], neither of these two aldehydes have been reported before as natural products.

Acknowledgements—The authors thank Miss Y. Kimura for IR and PMR and Mr. M. Aimi for MS

REFERENCES

- 1. Kimura, Y. and Kobayashi, Y. (1957) Pharm. Bull. Nihon University 1, 27
- 2. Sadtler. Standard Infrared 32, 32 838.
- 3. Sadtler. Standard NMR 4571M.
- Hunsberger, I. M., Lednicer, D., Gutowsky, H. S., Bunker, D. L. and Taussig, P. (1955) J. Am. Chem. Soc. 77, 2466.

Phytochemistry 1978, Vol 17, pp 328-329 Pergamon Press Printed in England

AEGELINOL, A MINOR LACTONIC CONSTITUENT OF AEGLE MARMELOS

ASIMA CHATTERJEE, RAJASHREE SEN and DHIRA GANGULY

Department of Pure Chemistry, University College of Science, Calcutta-700009, India

(Received 29 July 1977)

Key Word Index-Aegle marmelos; Rutaceae; aegelinol; 3'-epimer of decursinol

INTRODUCTION

A number of coumarins [1-6], alkaloids [1-3, 6-8], sterols [3, 4, 9] and essential oils [10] have been reported in *Aegle marmelos*. In the course of the present work a new coumarin, aegelinol, has been isolated from the root and stem-bark.

RESULTS AND DISCUSSION

Aegelinol shows the UV absorption of a 2',2'-dimethylchromeno-3'-hydroxycoumarin ($\lambda_{\rm max}^{\rm EiOH}$ 336 nm; log ε 4.47; $\lambda_{\rm max}^{\rm EiOH+alkali}$ 320 nm; log ε 4.55). Strong absorptions at 3400 cm⁻¹ (-OH) and 1720 cm⁻¹ which indicate a lactone carbonyl, were discernible in the IR spectrum (nujol mull). In its 60 MHz NMR spectrum

(CDCl₃) characteristic signals were observed for a gemdimethyl group (δ 1.42, 6H, s), an alcoholic hydroxyl function (δ 2.51, 1H. br signal, disappeared on deuteration), a-CH₂-CH-system (δ 3.04, 1H, d, J = 2.5 Hz and δ 2.95, 1H, d, J = 9.0 Hz; δ 3.94, 1H, m), two aromatic para protons (δ 6.77 and 7.20, 1H, s, each) and the C-3 and C-4 protons of the coumarin nucleus (δ 6.20 and 7 60, 1H, d, each; J = 9.5 Hz). The secondary nature of the hydroxyl function (—CH—OH) was apparent from the downfield shift of the methine signal to δ 5.10 in aegelinol monoacetate, C₁₄H₁₃O₃. OCOMe, mp 138°. On dehydration with p-toluenesulphonic acid the compound afforded anhydromarmesin (1).

From the above data and from the mass fragmentation $[m/e\ 264\ (M^+),\ 217,\ 213,\ 188,\ 187,\ 160,\ 131,\ 119,\ 91$ and

Short Reports 329

77] a pyranocoumarin structure (2) is proposed for aegelinol. This was confirmed by the conversion of aegelinol tosylate (3) to xanthyletin (4) by refluxing with collidine. The same structure has been reported for decursinol (5) [11] but as the optical rotation is of the opposite sign aegelinol must be the 3'-epimer of decursinol (5). The absolute configuration at this asymmetric centre (C-3') in aegelinol was confirmed to be 'R' by Horeau's methods [12, 13].

EXPERIMENTAL

chromatography and S1 gel G (Merck) for TLC.

Isolation of aegelinol (2). The finely powdered root- and stem-bark of Aegle marmelos Correà (11 kg) were defatted (64 hr) with petrol (bp 60-80°) before extraction (50 hr) with CHCl₃ in a Soxhlet. The CHCl₃ extract was coned to give marmin, $C_{19}H_{24}O_5$, mp 124–125° and marmesin, $C_{14}H_{14}O_4$. mp 189°. The mother liquor was shaken with 5% citric acid, filtered and the filtrate extracted with CHCl3, washed and dried. The conc CHCl₃ extract was chromatographed over Si gel. Colourless crystals (0.0109 $^{\circ}$) of aegelinol, $C_{14}H_{14}O_{4}$, 246), mp 175-177° $[\alpha]_D^{20} - 12^\circ$ (c = 0.83, CHCl₃), were obtained by recrystallisation from C₆H₆ of the solid obtained in the C_6H_6 -CHCl₃ (2:1) eluates. (Found: C, 68.23; H, 5.65. C₁₄H₁₄O₄ requires C, 68.29; H, 5.69%). The monoacetate (6) crystallised from petrol $-C_6H_6$, mp 138°. (Found: C, 66.73; H, 5.50. C₁₆H₁₆O₅ requires C, 66.66; H, 5.55%). The tosylate (3) crystallized from ether, mp 140° (Found: C, 62.88; H, 5.22; S, 7.95. C₂₁H₂₁O₆S requ. C, 62.84; H, 5.24; S, 7.98 %).

Acid catalysed dehydration of (2). Aegelinol (30 mg) was dissolved in dry $\rm C_6H_6$ (25 ml), p-toluenesulphonic acid (2 mg) added and the mixture refluxed for 2.5 hr. The product, anhydromarmesin (1), crystallised from MeOH, mp 138 [Yield 18 mg). Identity of the sample was confirmed by comparison (co-TLC, mmp and superimposable IR spectra) with an authentic sample. (Found: C, 73.65; H, 5.31. $\rm C_{14}H_{12}O_3$ requires C, 73.67; H, 5.30%).

Base catalysed dehydration of aegelinol tosylate (3) with collidine. Aegelinol tosylate (70 mg) was refluxed with collidine

(10 ml) to yield xanthyletin (4) (25 mg), mp 128° (crystallised from C_6H_6). The compound was identified by comparison (co-TLC, mmp and superimposable IR spectra) with an authentic sample (Found: C, 73.70; H, 5.28. $C_{14}H_{12}O_3$ requires: C, 73.67; H, 5.30%).

Reaction of aegelinol with racemic α -phenyl butyric anhydride (by Horeau's method). Racemic α -phenylbutyric anhydride (350 mg) and aegelinol (100 mg) were dissolved in dry Py (5 ml) and left 18 hr. The excess anhydride was decomposed by adding ice-cold H_2O (30 ml) and the aq. soln was extracted twice with EtOAc. The EtOAc extract was washed with 5% aq. NaHCO₃ (3 × 10 ml), water and dried. The NaHCO₃ washings were washed with CHCl₃ to remove any residual neutral matter and subsequently acidified with 3N HCl. The free acid liberated was extracted with CHCl₃ and worked up in the usual manner. The free α -phenylbutyric acid was isolated from the CHCl₃ soln on evapn. After drying the free acid recorded a rotation $[\alpha]_D^{25} = +0.5^{\circ}$.

Acknowledgements—The authors express their sincere thanks to Dr. G. F. Bedford, I.C.I., U.K., Dr. Nitya Nand, C.D.R.I., Lucknow, Professor P. K. Bhattacharya, I.I.S., Bangalore and Mr. A. K. Acharyya, Department of Pure Chemistry, University of Calcutta for spectral measurements and to C.S.I.R. (India), for financial support to one of them (RS).

REFERENCES

- 1. Chatterjee, A. and Bhattacharya, A. (1959) J. Chem. Soc.
- Chatterjee, A. and Mitra, S. S. (1949) J. Am. Chem. Soc. 71, 606.
- 3. Chatterjee, A. and Chaudhury, B. (1960) J. Indian Chem. Soc. 37, 334.
- 4. Saha, S. K. and Chatterjee, A. (1957) J. Indian Chem. Soc. 34, 228.
- Shoeb, A., Kapil, R. S. and Popli, S. P. (1973) Phytochemistry 12, 2071.
- 6. Basu, D. and Sen, R. (1974) Phytochemistry 13, 2329.
- Chatterjee, A., Chaudhuri, R. K. and Das, B. C. (1967) Sci. Cult. 33, 279.
- Chatterjee, A., Bose, S. and Srimany, S. K. (1959) J. Org. Chem. 24, 687.
- Chatterjee, A. and Roy, S. K. (1959) J. Indian Chem. Soc. 36, 267.
- Balas, K. K. and Despande, S. S. (1949) J. Indian Chem. Soc. 26, 231.
- Konoshima, M., Chi, H. J. and Hata, K. (1968) Chem. Pharm. Bull. 16, 1139.
- 12. Horeau, A. (1961) Tetrahedron Letters 506.
- 13. Horeau, A. and Kagan, H. B. (1964) Tetrahedron 20, 2431.